

Agenda

Active Transportation Advisory Committee The Corporation of the City of Brampton

Date: Tuesday, December 12, 2023 Time: 5:00 p.m. Location: Hybrid Meeting - Virtual Option & In-Person in Council Chambers - 4th Floor -City Hall Steven Laidlaw (Co-Chair) Members: Lisa Stokes (Co-Chair) Enzo Bek Cindy Evans Alina Grzejszczak Dayle Laing **Barry Lavallee** Steven Lee Akinade Oduntan Regional Councillor Rowena Santos

For inquiries about this agenda, or to make arrangements for accessibility accommodations for persons attending (some advance notice may be required), please contact: Tammi Jackson, Legislative Coordinator, Telephone 905.874.3829, TTY 905.874.2130 cityclerksoffice@brampton.ca

Note: Meeting information is also available in alternate formats upon request.

1. Call to Order

2. Approval of Agenda

3. Declarations of Interest under the Municipal Conflict of Interest Act

4. **Previous Minutes**

4.1 Minutes - Active Transportation Advisory Committee - October 10, 2023

The minutes were considered by Committee of Council on October 25, 2023, and were approved by Council on November 1, 2023. The minutes are provided for Committee's information.

5. Presentations / Delegations

5.1 Presentation by Fernanda Soares, Project Manager, Active Transportation, Planning Building and Growth Management and Rowaidah Chaudry, Transportation Planner, Planning Building and Growth Management, re: Complete Streets Guidelines

To be received.

5.2 Presentation by Barry Lavelle, Citizen Member, re: Parking In Bike Lanes

Note: A video was submitted by the delegation and is available for viewing here.

To be received.

5.3 Presentation by Stephane Laidlaw, Co-Chair, re: Winter Cycling In Brampton -Lessons Learned from Finland

> *Note:* A video was submitted by the delegation and is available for viewing <u>here</u>. To be received.

6. Reports / Updates

7. Other / New Business / Information Items

7.1 Active Transportation Advisory Committee - Sub-Committee Minutes - November, 2023

To be received.

7.2 Information provided by Tyron Nimalakumar, Transportation Planner, Planning Building and Growth Management. re: Community Rides Debrief 2023

To be received.

7.3 Information provided by Fernanda Soares, Project Manager, Active Transportation, Planning Building and Growth Management, re: Wards 3 & 4 Community Town Hall -Bike Lanes on Charolais Boulevard

To be received.

- 8. Correspondence
- 9. Question Period
- 10. Public Question Period

15 Minute Limit (regarding any decision made at this meeting)

11. Adjournment

Complete Streets Guide Presentation

Fernanda Soares / Rowaidah Chaudhry

Active Transportation Advisory Committee December 12, 2023

Page 4 of 74

What's Inside: Chapter 1 ~ Introduction Chapter 2 ~ Street Context Chapter 3 ~ Planning & Design **Chapter 4** ~ Design Elements Chapter 5 ~ Implementation

Chapter 1: Introduction

Page 6 of 74

"Complete streets" are streets that are designed to be safe for all users: people who walk, bike, take transit or drive, and for people of varying ages and levels of ability.

Region of Peel Working for you

Streetscaping Toolbox Update September 2017

Policy Context

LIVIN

Application of the Guide

- All street projects
- Development projects
- Environmental Assessments
- Redevelopment initiatives
- Planning studies
- Public realm plans
- Secondary plans
- Revitalization projects

Chapter 2: Context Specific Design

Page 11 of 74

Figure 2.5. Brampton Complete Street Typologies

Figure 2.4. 11 Brampton Street Types, organized by their link and place objectives.

Typology Guidance

Redesigning a Street

Page 16 of 74

Chapter 3: Steps to Street Planning

0

Assembling a Street

Figure 3.33. Steps to Assembling the Street as part of the Project Delivery Process

Fast	er transit vs. more stops
Veh	icle delay vs. longer crossing time
Veh	icle delay vs active transportation needs
Higł	n speed roadways vs context sensitive urban streets
Cer	tre median vs. driveway access
Cur	b extension and full-time parking lane vs. pedestrian refuge median at intersections
Righ	It turn on red and impacts on bike queues
Left	-turn lane vs. bike lane through intersection
All-	purpose motor vehicle capacity vs. bus lanes or diamond lanes vs. pedestrian realm
Stre	et trees vs. cycling infrastructure
Stre	et trees vs below grade utilities
Bicy	cle lanes vs. wider sidewalks
Ruro	al clear zones vs urban lateral offsets
Nea	r-side vs. far-side bus stop and attendant bike facilities
Lea	d vs. lag turns, and impacts on pedestrian/bike movements
Cur	o-side bus queue iump lane vs. shorter crossing distance for pedestrians

Key Directives

Table 3.1 Key Directives for Decision Making

Safety	Link	Place	Greening	Life-Cycle and Maintenance
Prioritize Vulnerable Users	Understand and Accommodate Desire Lines	Respect Context	Street Trees	Understand the Total Cost
Reduce and Manage Vehicle Speed	Design for Person Throughput and Mobility	Ensure Pedestrian Comfort	Stormwater Management	Support Four- Season Use of Streets
Accommodate the Smallest Possible Design Vehicle	Design Complete Streets to Support a Complete Network		Preserve Existing Vegetation	Select Robust Materials
Minimize Exposure Risk	Enhance Network Connectivity			
Maximize Predictable and Self-Regulating Design				

Page 19 of 74

Safety

- Street design will need to prioritize vulnerable users
- Reduce and manage vehicle speed through design
- Accommodate the smallest possible design vehicle
- Minimize exposure risk
- Maximize predictable design

Safety

- Accommodate the smallest possible design vehicle
- Minimize exposure risk
- Maximize predictable design

Figure 3.9. Design vehicles are the most common large vehicles that use city streets, similar to a Canada Post or other courier trucks.

Figure 3.10. Control vehicles, like fire trucks, are the largest vehicles that use city streets. They are permitted to use more of the street to maneuver.

» Design vehicle

» Control vehicle

Link

- Design for person throughput
- Complete networks and fill gaps
- Accommodating desire lines
- Enhance network connectivity

1 person per car (typical single occupant vehicle)

50-75 people per Brampton Transit Bus

Light Rail Transit vehicle

250 to 300+ passengers per

Person Capacity. For longer trips, transit can move far more people and with greater efficiency than single occupant vehicles.

Figure 3.24. Mode Priority and

source: Metrolinx; Brampton Transit; DTAH

Figure 3.27. Block Pattern and Network Connectivity. Six examples from different parts of Brampton. Note the higher amount of possible routes in some parts of the city than others. The greater the number of intersections in a given area, the more connected and complete the network.

source: DTAH

Page 22 of 74

Place

FOCUS OF TRADITIONAL APPROACH Auto-Mobility Automobile Safety

Highway 7

COMPLETE STREETS APPROACH

Multi-modal Mobility + Access Public Health/Safety Economic Development Environmental Quality Livability/Quality of Life Equity

Danforth Road

Page 23 of 74

Greening

- Help Brampton mitigate and adapt to climate change
- Expand the urban forest by installing street trees
- Manage stormwater
 through street elements

Life Cycle and Maintenance

- Understand the total cost of the project and the cost of incomplete streets
- Support four-season use of streets
- Select robust materials to increase lifespan

Figure 3.30. Designing streets that consider four season use means ensuring clear and accessible facilities for all users, and providing enough space for snow storage while maintaining suitable pedestrian clearway.

Chapter 4: Design Elements

NCE FOR BETTER BIRING

Page 26 of 74

Components

Boulevard Design

Cycle Infrastructure Design

Roadway Design

Green Infrastructure Design

Intersection Design

Page 27 of 74

Table 4.1 Pedestrian Clearway Width by Street Type

The firs man There

Street Type	Recommended Minimum Target Width		
Urban Main Street	3.0m		
Neighbourhood Connector	2.lm		
Commercial Connector	2.lm		
Mixed Use Residential	3.0m		
Neighbourhood Residential	2.1m		
Employment Collector	2.lm		
Downtown Streets	3.0m		
Local Residential	2.lm		
Local Employment	2.lm		
Shared	Entire Street		
Lane	Entire Street		

idge tone

LW/

ting Zone

Furnishing & Planting Zone

- Typically between the edge zone and pedestrian clearway
- Preferred location for street furniture
- Can contribute significantly to placemaking

Frontage and Marketing Zone

Pedestrian Clearway Zon Page 30 of 74

Furnishing and Planting Zone

Edge/Curb Zone

Figure 4.8. The Edge/Curb Zone may have some vertical elements, such as street lights, utility poles, parking meters and parking signs. It's also used for snow storage in the winter months.

- Should be distinct from the Furnishing/Planting Zone
- Promotes placemaking in urban areas
- Can be used for street maintenance (snow storage)
- May include sign posts, parking meters, car door swing paths
- Should not overlap with cycling facilities

Frontage and Marketing Zone Pedestrian Clearway Zon Page 31 of 74

Clear Zones/Lateral Offsets

Figure 4.27. Lateral Offsets for Brampton Streets, based on TAC 2017 Guidance. All measurements from face of curb. Mid-block: minimum 0.5m; Intersections: minimum 0.9m; Enhanced offset for Urban Streets where space permits: 1.2m to 1.8m.

Clear Zones

- Traditionally clear zones are provided on highways and higher speed rural roads
- Clear zones are not applicable in urban contexts and not desirable for Brampton streets Lateral Offsets
- Vertical elements can help create a sense of traffic calming and physically separate vulnerable users

Frontage and Marketing Zone

Pedestrian Clearway Zon Page 32 of 74

Mid-Block

Min. 0.5m

Furnishing and Planting Zone

Marketing & Frontage Zone

Figure 4.7. Frontage and marketing display elements should be provided to maximize a clear and straight Pedestrian Clearway Zone

- Accommodates outdoor seating and marketing elements for local businesses
- Outdoor patios/marketing displays should not infringe on the pedestrian clearway

Frontage and Marketing Zone

Pedestrian Clearway Zon Page 33 of 74

Furnishing and Planting Zone

Cycle Infrastructure

Page 34 of 74

Cycle Infrastructure

- Multi-Use Path
- Cycle Tracks
- Bike Lanes
- Bicycle Wayfinding

Shared Space	Bicycle Boulevards Sharrows Super Sharrows Signed Routes	Volumes of < 3,000 AADT Operating speeds <40km/hr Local Roads
Shared Space	Sharrows Super Sharrows Signed Routes	Volumes of < 3,000 AADT Operating speeds <40km/hr Local Roads

Designated Space Buffered Bike Lanes Paved Shoulders Buffered Paved Shoulders

Volumes of 3,000 to 15,000 AADT Operating speeds of 40 to 50km/hr Collector Roads/Minor Arterial Roads

Separated Space

Boulevard Multi-use PathsVolumes of >10,000 to >15,000 AADTSeparated Bike Lanes or
Cycle TracksOperating speeds of equal to or > 50km/h
Minor Arterial Roads/Major Arterial Roads

Page 35 of 74

Roadway

Design Elements

- Design Speed
- Lane widths
- Lateral Offsets for Vertical Elements
- Access for Emergency Vehicles
- Curbside Space
- Mid-block Pedestrian Crossings
- Traffic Calming
- Driveways

The Guide recommends that the City conduct a speed reduction study and undertake a review to update existing City Standards

Design Speed

- Default speed in Brampton is 50 km/h
- Arterials are designed to facilitate the greatest vehicle operating speed
- The best practice in urban areas is to design streets so the operating speeds are the same as the posted speeds

Road Classification	Street Type	Design Speed	Posted Speed
Arterials	Urban Main Street	40-60	40-50
	Neighbourhood Connector	60-70	50-60
	Commercial Connector	60-70	50-60
Collectors	Mixed Use Residential	40-50	40-50
	Neighbourhood Residential	40-50	40-50
	Employment Collector	40	40
	Downtown Streets	40	40
Locals	Local Residential	30-40	30-40
	Local Employment	30-40	30-40
	Shared	20	20
	Lane	20	20

Note: * subject to recommended speed reduction study

Table 4.5 Recommended Maximum Target Speed Ranges by Brampton Street Type (km/hr)*

Table 4.10 Design Vehicle, Control Vehicle, and Curb Radii by Receiving Street

Receiving Street	BCSG Design Vehicle	BCSG Control Vehicle	Curb Radii* (m)
Minor Local	P: Passenger	LSU: Light Single Unit	4.0
Local	P: Passenger	LSU: Light Single Unit	4.0
Collector	LSU: Light Single Unit	B-12: Brampton Bus	6.0
Collector (Industrial)	MSU: Medium Single Unit	WB-20: Tractor	
Arterial	B-12: Brampton Bus	WB-20: Tractor	
Arterial (Industrial)	HSU: Heavy Single Unit	WB-20: Tractor	

Lane Type	Minimum	Maximum	Target	
Streets with De	sign Speed 50km/h	or less		
Curb	3.0	3.5	3.3	
Through	3.0	3.5	3.0	
Transit or Trucki	ng Route			
Curb	3.5	3.7	3.5	
Through	3.3	3.5	3.3	
Streets with Design Speed greater than 50km/h				
Curb	3.5	3.9	3.5	
Through	3.3	3.7	3.3	
All Streets				
Turning	3.0	3.5	3.0	
Dedicated Parking	2.4	3.0	2.5	

Table 4.9 Brampton Roadway Lane Width Guidelines (metres)

Potential Complete Street Cross Section

23.0m ROW, 11.2m Pavement

Table 4.6 Recommended Brampton Design and Posted Speeds, Related to Road Classification

Road Classification	Arterial	Collector	Local
Posted speed more than or equal to 50km/hr	Design speed = posted speed + 10km/hr	Design speed = posted speed	Design speed = posted speed
	Design speed = posted speed for the following elements: lane widths, tapers, and horizontal offsets		
Posted Speed less than 50km/hr	Design speed = posted speed + 10km/hr for the following elements: horizontal alignment, vertical alignment, and	Design speed=posted speed for all elements	Design speed=posted speed for all elements
Page 38 of 74	intersection sightlines.		

Intersection

Design Elements

- Context Sensitive
 Intersection Design
- Corner Design/Curb Radii
- Bicycle Infrastructure
- Transit Infrastructure
- Crosswalks
- Urban Smart Channels
- Intersection Control

Green Infrastructure

Design Elements

- Street trees and landscaping
- Low impact developments

Recommendations

- Landscape Development Guidelines Update
- Stormwater Master Plan Update
- Low Impact Development (LID) Terms of Reference
- Stormwater Management Criteria

Chapter 5: Implementation

Page 41 of 74

- Policy
- Standards & Guidelines
- Process
- Plans and Studies
- Projects
- Evaluation & Monitoring
- Communication & Engagement

Current Projects

- Ongoing environmental assessments and capital works projects
- Brampton Mobility Plan
- Speed Reduction Study

 Policy and best practices review
- Standards Update
 - $_{\odot}$ Update existing Brampton Standards
 - ${\rm \circ}$ Add any new standards as required
- Complete Streets Website

Thank You

Winter Cycling In Brampton **Lessons learned from Finland**

Stephen Laidlaw Active Transportation Advisory Committee 2023

Page 45 of 74

Walking and riding in winter climates. **Considerations**

- An example of how to encourage transportation during winter months can be found in this presentation video, highlighting strategies in Oulu and Helsinki, Finland.
- https://www.youtube.com/watch?v=ppRQWxj6VDU
- https://1drv.ms/v/s!Aqk5GlKxZcKWjWlsKZpebHDbYQiU
- Please pay attention to a differing strategies compared to road clearing versus multi-use trail clearing.

On January 16 and 17, 2022, there was a snow fall event in the greater Toronto area, where some areas received an accumulation of 55 centimetres in 15 hours.

In Brampton, I along with others, documented the lack of snow clearing in a particular neighbourhood up to six days after the end of the snowfall. This area was east of the Bramalea City Centre and west of Bramalea Road, sometimes referred to as the "K" section.

This area includes Knightsbridge Road, King's Cross Road, Kensington Road, Central Park Drive, and Team Canada Drive. This is a densely populated area of Brampton, which includes twelve high rise apartment buildings, three residences for seniors, a large medical building, a strip mall with a food store and two day care facilities, as well as the Bramalea Bus Terminal. This is a walkable community, and yet, well after the snow event, sidewalks were not cleared, and pedestrians were forced to take to the

roads, to travel.

The challenges of clearing the sidewalks after this particular event were evident. As the temperatures remained cold that week, there was no snow melting, to assist in clearing the sidewalks. I also witnessed several sidewalk plows having trouble plowing this amount of snow. However, I think that we should be prepared for this type of snow fall.

What I am preposing is to identify certain higher density neighbourhoods in Brampton as priority snow clearing areas. Resources would be concentrated in these areas first, to serve the greatest number of citizens. Once these areas, with greater number of pedestrians, are cleared, then the other areas will be serviced.

Please provide any ideas or policies on this topic.

Stephen Laidlaw

Snow Clearing Strategies For Higher Density

Areas Of Brampton

ATAC November 2023 Subcommittee Meeting Minutes

- Attending: Dayle, Lisa, cindy, Steven Lee, Barry, Steve Laidlaw, Alina, Rowaidah, Tyron, Enzo, Nelson, Fernanda
- Fernanda presented StreetLight Data Overview
- Data analytics platform
- Machine learning algorithms
- Measure diverse travel patterns
- Data collected from cars, phones, smart watches
- Can determine mode
- Data also gathered from mobile apps
- Covers about 28% of adult data versus 5% from Transportation Tomorrow Survey (TTS)
- Charolais analysis is the first instance of using this data
- Presented at Councillor Town Hall
- Data should be updated annually
- <u>Streetlightdata.com/research-reports</u>
- Can we get this regularly in future? The city is on a trial. Working with StreetLight team during trial. Considering an RFP to acquire service in future. Pursuing funding for 2024 or 2025
- Is strava included in this? Not sure, can get back to Dayle. It's data from a certain type of cyclist.
- Will this replace TTS? General picture data source. Streetlight Data collected passively. Doesn't require someone to remember. More precise. Larger sample size.
- Would it be possible for StreetLight to identify collision sites? Don't think so
- Can it differentiate bike lane versus sidewalk riding? Tricky to differentiate that
- Can we see other municipalities' data? No
- Trial period is three months, ending March. Requesting budget. Would be an annual subscription
- Traffic Ops also has access to trial, also Transit
- Nelson Need to determine if it can it replace resource intensive counts that city currently does
- Could provide monthly data, but currently ends April 2023
- How can data be presented? Can you get a heatmap or do you study a specific street. Yes to heatmap, street data, spreadsheets
- Will data be used to proactively communicate to public? Yes, having this data to show people proof
- Next generation of traffic lights that can monitor. Was being piloted. Is that still useful? It is a piece of the monitoring puzzle.Location Williams and Graymar, Vodden and Centre. Nelson will ask for data and bring it back. The different data sources are complimentary
- Steve: Leading Pedestrian Interval (LPI)
- Can address left turn collisions with pedestrians according to Toronto's web page
- Hasn't found metrics showing before and after collision results
- Dayle observed one at Hinchley and Bovaird
- Mississauga seems to be taking Vision Zero seriously

- Brampton installing a lot of speed cushions
- 50 moveable speed cameras in Brampton
- Mississauga action plan identified 99 areas of improvement, timeless, progress report
- Nelson: partnered with Region to deliver strategy, Council committed to participate in Regional program
- LPIs need to decide which ones, education, council endorsement, etc
- Crossing six or eight lanes is always going to be dangerous just due to the nature of the width of the road. Need many interventions to reduce the hostile environment in huge intersections
- Transit users getting from south of Steeles to buses from LRT it will be very challenging
- Next steps Nelson suggests a pilot is best to start
- <u>Turn sign pilot</u> Dixie and Howden, Peter Robertson and Sunny Meadow, McKay and North Park - if it doesn't fix non-compliance next step will be physical
- Steven Lee suggests listening to <u>https://podcast.strongtowns.org/e/conor-semler-a-new-decision-making-framework-for-st</u> <u>reet-design/</u>
- Peel Vision Zero
- Guardian Article on pedestrian collisions in Peel
- Peel Cyclist collision dashboard
- 2019 Peel Region Vision Zero Plan Update Year One
- Year Two

2023 Community Ride Debrief

City of Brampton – Tyron Nimalakumar October 12th 2023

Basic Stats

- Ridership averaging 30-40 people
- 67 riders on the Tour the Trees Ride!
- 286 unique registrations
- 409 total registrants
- 14 total rides
- Less focus on geographic distribution, more on themes

Sign-Ups

• Top reasons are:

- Exercise
- Something to do with friends / family
- Meeting new people
- Getting outdoors
- Brand as an activity for people to get outdoors
- People aren't totally swayed by treat

Successful Ads

Successful Ads

Rider Risk Acceptance

- Good distribution of riders from all skill levels
- 1/3 of riders are selfprofessed "occasional riders"
- Do we want to change the make-up of rides in the future?

Wards 3 & 4 Community Town Hall

Bike Lanes on Charolais Boulevard

Tuesday October 17, 2023

Nelson Cadete – Manager of Transportation Planning Fernanda Soares – Project Manager for Active Transportation Kevin Minaker – Manager of Traffic Operations and Parking

STREETS For people

IMPROVING OUR ROADS

🚥 🖬 🛩 💿 💿 www.brampton.ca/ATP

BRAMPTON IS A SAFE AND ACTIVE CITY

2023 Work Plan

- ් 29.2 km of linear Infrastructure (3 km in Wards 3&4)
- ් 25 pedestrian crossovers
- ් 23 curb depressions at park paths/trails (1 in Wards 3&4)
- of₀ 13 bicycle traffic lights (3 in Wards 3&4)
- が 7 traffic control signals (2 in Wards 3&4)
- ් East-West Cycling Corridor Protected Bike Lane
- or₀ Electric Kick-Style Scooter Pilot
- ං් Cycling Design Consultant
- or Priority Cycling Network Design Project

- No Bike Parking Zoning
- of₀ Protected Intersection Pilot (Williams Parkway)
- ් Bike the Creek Event
- ් Trail Bike/Pedestrian Counters
- or₀ Bicycle Repair Stands
- ් Pedal Poll
- ් Brampton Bike Hub
- ා් Bike Month / Bike to Work Day
- of₀ Bicycle Friendly Business Program

Bike counter

Page 68 of 74

Charolais Blvd. (Before & After)

Speed and Volume Comparison Before and After Road Diet

	east of McLaughlin Road		west of McLaughlin Road		east of Chinguacousy Road				
	Before	After	Difference	Before	After	Difference	Before	After	Difference
AADT	16,266 veh/day	10,642 veh/day	-5,642 veh/day	15,469 veh/day	10,322 veh/day	-5,147 veh/day	13,235 veh/day	8,248 veh/day	-4,987 veh/day
Average Speed	58 km/h	49 km/h	-9 km/h	51 km/h	42 km/h	-9 km/h	56 km/h	46 km/h	-10 km/h
85 th percentile Speed*	67 km/h	58 km/h	-9 km/h	60 km/h	50 km/h	-10 km/h	66 km/h	55 km/h	-11 km/h
% Trucks/Bus	22%	21%	-1%	21%	21%	0	17%	16.4%	-0.6%

*85th percentile speed is defined as the speed at which 85 percent of vehicles are travelling at our below

Charolais Blvd. (Before & After)

Before and After Bicycle Trips – Charolais Blvd.

Bike Trips	Nov. 2019 - March 2020	Nov. 2021 - March 2022	Increase Percentage (2021 vs. 2019)
Average Daily Trips within Neighbourhood	779	1197	54%
Average Daily Trips using Charolais Blvd	392	762	94%
Average Neighbourhood Bike Trip Length (min)	13.2	16.5	26%

Before and After Traffic – Charolais Blvd.

Vehicle Trips	Nov. 2019 - March 2020	Nov. 2021 - March 2022	Increase Percentage (2021 vs. 2019)
Average Travel Time driving through Charolais Blvd (min)	7.9	7.5	-4%
Average Daily Cut-through Trips (passing through the Neighbourhood)	4368	3928	-10%
Average Daily Trips to or from the Neibhourhood	4432	4731	7%
Cut-through Trip percentage	50%	45%	-9%

- Increase in Bike trips overall
- Increase in Bike trips through the corridor
- "People willing to bike more"

• Decrease in cut-through traffic

(traffic passing through a residential area without stopping or without an origin or destination within the area utilizing a "local residential street" rather than streets whose primary function is to accommodate through traffic)

StreetLight Data is a mobility analytics platform that collects big data from mobile dpyges to greature travel patterns of vehicles, bicycles and pedestrians (origin and destination, travel time, speed, etc.).

Charolais Blvd. (E-scooter Pilot)

 193,337 trips since pilot program launch (for the whole City)

• 21,772 trips originated or ended in the area

Charolais Blvd. (Road Diet)

Road diets involve changing a four-lane roadway into two through car lanes and repurposing the remainder of the road (parking, cycling lane). Below are some benefits and challenges

Benefits	Challenges	
Reduced speeds	Congestion during peak periods	
Reduced non-local traffic	Education	
Reduced crossing distance for pedestrians including the crossing guard who used to have to navigate 4 lanes of traffic	None	
Pulls live traffic 3-4 metres away from the sidewalk, parks, playgrounds, transit stops, school crossing guards	None	
Provides safe space for cyclists and encourage alternate modes	None	
Implementation of automated speed enforcement in the school zone which was not permitted when it was a 4 lane road	None	
	Page 72 of 7	

Data Collections Results:

Decrease of 5,250 vehicles per day average Decrease of 9.5 km/h average speed reduction

Questions?

RDEAT DBEAT

brampton.ca/cycling

