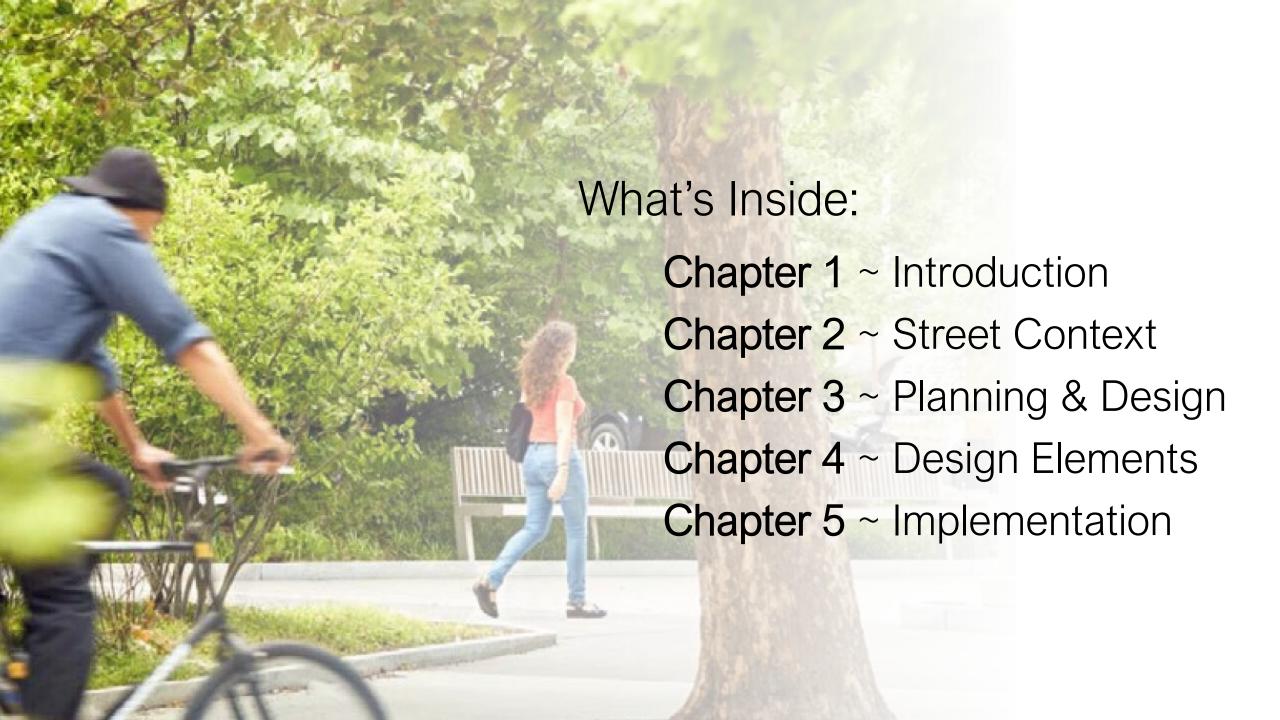

CITY OF BRAMPTON COMPLETE STREETS **GUIDE**

Complete Streets Guide Presentation


Fernanda Soares / Rowaidah Chaudhry

Active Transportation Advisory Committee December 12, 2023

SEPTEMBER 2022

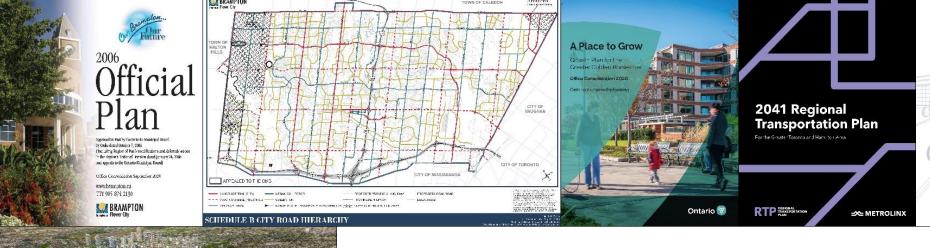
Guiding Principles

Safe and Accessible

Sustainable and Resilient

Promote Healthy and Active Living

Improve
Transportation
Choices and
Balance Priorities



Develop Connected Networks

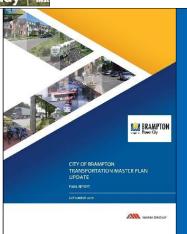
Respect Existing and Planned Context

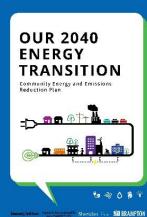
Create Vibrant and Beautiful Places


Enhance Economic Vitality

Region of Peel

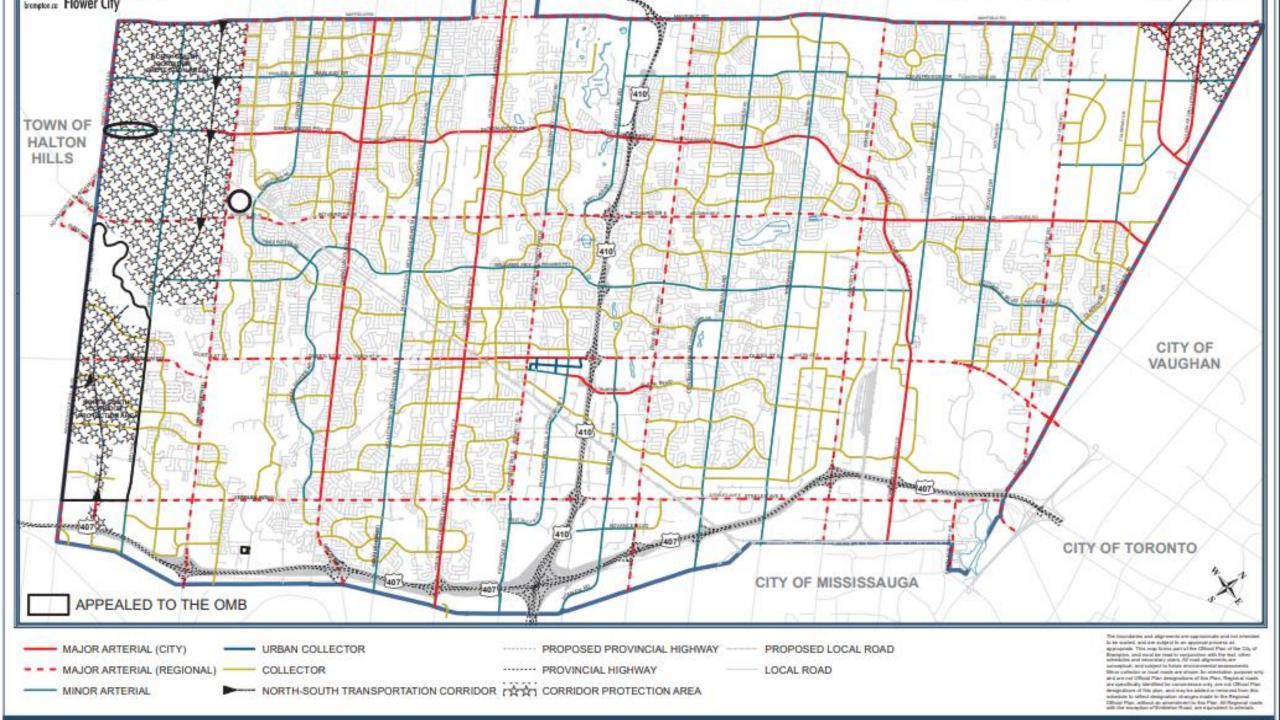
Policy Context




CVC CONSERVATION

Part 8 of the Development Design Guidelines

Process by B Date 181



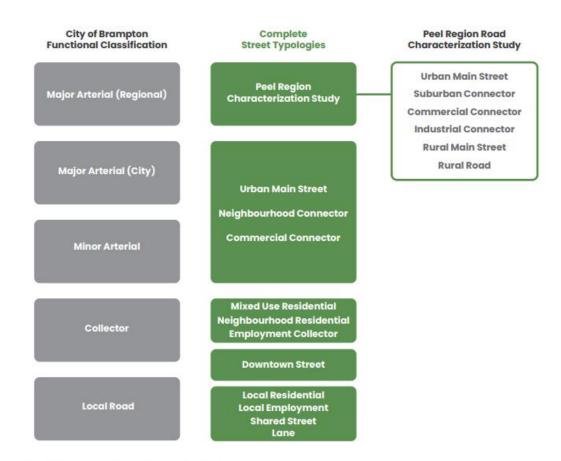
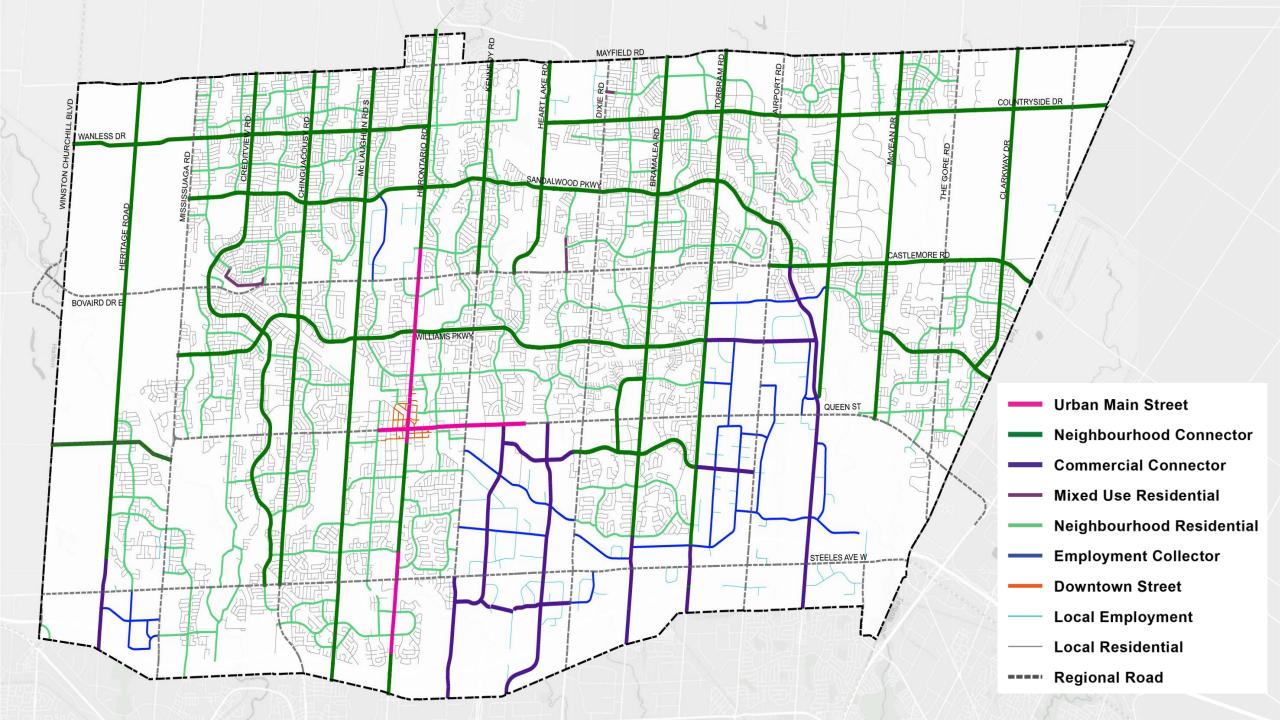



Figure 2.5. Brampton Complete Street Typologies

Figure 2.4. 11 Brampton Street Types, organized by their link and place objectives.

Typology Guidance

Explainer on Street Context Type Brampton ete Streets Guide

Defining Brampton's Street Type

2.5

2.5.5

Neighbourhood Residential

Neighbourhood Residential Streets provide access to residential areas of the city and often mark the entrances to Brampton's Neighbourhoods. Predominately residential uses face the street, though stretches of rear facing lots and businesses may sometimes be present. Buildings vary in scale and are generally set back from the property line with well-established front yards and gardens.

Figure 2.19. Transit is often located on Neighbourhood Residential Streets.

Figure 2.20. Neighbourhood Residential Streets often include safe dedicated cycling facilities and multiple places for pedestrian to cross the street.

Neighbourhood Residential streets are collectors that are planned and designed to provide access to and from residential neighborhoods. These streets are not intended for the use of nonlocal traffic and are often found in areas with longer distances between signalized intersection.

When congested conditions occur these streets often provide an attractive alternative route, or "cut-through," so additional cars is needed to ensure streets and intersections are designed for the most vulnerable people walking and cycling. Safety for people walking and cycling is pylority and sidewalks should be designed for low to medium volumes of pedestrians with clear and well marked crossing is fatures.

APPLICATION

- City Collectors
 Residential Areas
 ROW: 23-30m
- SAMPLE STREETS

 Fernforest Drive

DESIGN OBJECTIVES

Pedestrian

- Provide sidewalks and safe controlled crossings to connect destinations, especially to the many trail crossings in the City, transit stops and neighbourhood destinations such as schools, playgrounds or recreation centres.
 Incorporate a planting strip
- between the curb and pedestrian clearway, where possible, to separate pedestrians from vehicle traffic and provide space for additional greening.

Cyclin

 For bicycle routes identified in the Active Transportation Master Plan provide designated cycling facilities. Typically this would include on-road painted bike lanes and/or parking or protected/ buffered bike lanes at roadway City of Brampton Complete Streets Guide Street Context Defining Brampton's Street Types 2.5

Sample cross-

Figure 2.21. Demonstration of a Neighbhourhood Residential Street

 Plan for safe movement of cyclists through intersections, including reduced motor vehicle turn speeds, bike boxes, cross rides and/or protected intersections.

Transit

- Locate transit stops close to signalized intersections or other safe locations for pedestrians to cross.
- Provide enhanced transit stops, including sheltered seating, landscape elements and waiting areas,
- Ensure clear and accessible paths from sidewalks and stops to vehicles.
- Design stops to consider safe and predictable interface with cycling facilities, if provided.

Motor Vehicles

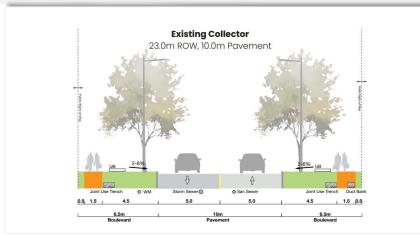
- When entering neighbourhoods, raised crosswalks, tighter turning radii are encouraged to signal to vehicles that slower speeds are expected.
- Frequent spacing of intersections and traffic calming should be included to reduce the speed of vehicles and reduce the amount of out-through traffic.
- Individual front driveways, common to many of the established neighbourhoods, should be designed to meet sidewalks at grade.
- In more dense residential neighbourhoods, shared driveways or rear-accessed parking is encouraged to reduce conflicts between pedestrians and turning vehicles and sidewalks should be designed support a higher number of pedestrians.

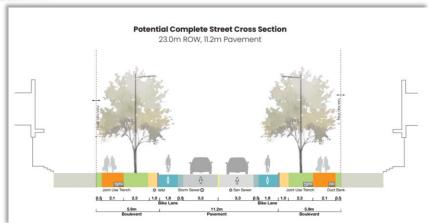
Sustainable Infrastructure

- Include wide planting zones, especially using the frontage zone, to support a continuous tree canopy, low maintenance native planting and to integrate low impact stormwater control measures.
- Consider curb extensions and other traffic calming or diversion elements as ideal locations for green infrastructure.

Guidance on different modes

section


Tips for sustainable design


Examples of typical streets and Brampton

Redesigning a Street

Assembling a Street

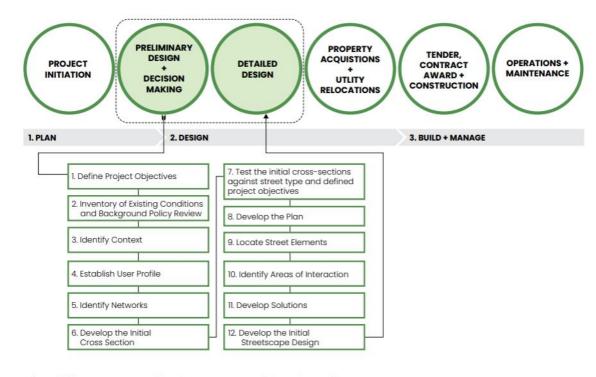


Figure 3.33. Steps to Assembling the Street as part of the Project Delivery Process

F	aster transit vs. more stops
٧	ehicle delay vs. longer crossing time
٧	rehicle delay vs active transportation needs
H	ligh speed roadways vs context sensitive urban streets
C	Centre median vs. driveway access
C	Curb extension and full-time parking lane vs. pedestrian refuge median at intersections
R	ight turn on red and impacts on bike queues
L	eft-turn lane vs. bike lane through intersection
Α	II-purpose motor vehicle capacity vs. bus lanes or diamond lanes vs. pedestrian realm
S	treet trees vs. cycling infrastructure
S	treet trees vs below grade utilities
В	icycle lanes vs. wider sidewalks
R	ural clear zones vs urban lateral offsets
Ν	lear-side vs. far-side bus stop and attendant bike facilities
L	ead vs. lag turns, and impacts on pedestrian/bike movements
C	Curb-side bus queue jump lane vs. shorter crossing distance for pedestrians
N	did-block bus bays vs. bus stopping in curb lane, and the bus operations implications

Key Directives

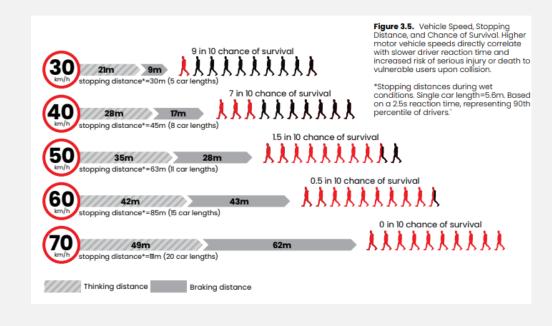
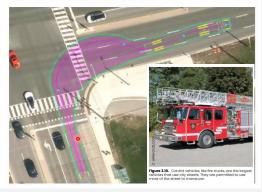


Table 3.1 Key Directives for Decision Making

Safety	Link	Place	Greening	Life-Cycle and Maintenance
Prioritize Vulnerable Users	Understand and Accommodate Desire Lines	Respect Context	Street Trees	Understand the Total Cost
Reduce and Manage Vehicle Speed	Design for Person Throughput and Mobility	Ensure Pedestrian Comfort	Stormwater Management	Support Four- Season Use of Streets
Accommodate the Smallest Possible Design Vehicle	Design Complete Streets to Support a Complete Network		Preserve Existing Vegetation	Select Robust Materials
Minimize Exposure Risk	Enhance Network Connectivity			
Maximize Predictable and Self-Regulating Design				

Safety


- Street design will need to prioritize vulnerable users
- Reduce and manage vehicle speed through design
- Accommodate the smallest possible design vehicle
- Minimize exposure risk
- Maximize predictable design

» Control vehicle

Safety

- Accommodate the smallest possible design vehicle
- Minimize exposure risk
- Maximize predictable design

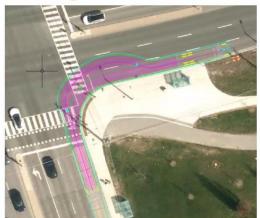


Figure 3.9. Design vehicles are the most common large vehicles that use city streets, similar to a Canada Post or other courier trucks.

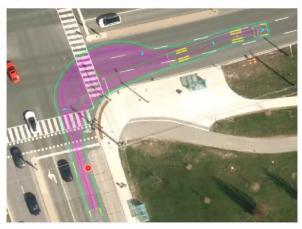


Figure 3.10. Control vehicles, like fire trucks, are the largest vehicles that use city streets. They are permitted to use more of the street to maneuver.

» Design vehicle

» Control vehicle

Link

- Design for person throughput
- Complete networks and fill gaps
- Accommodating desire lines
- Enhance network connectivity

l person per car (typical single occupant vehicle)

50-75 people per Brampton Transit Bus

250 to 300+ passengers per Light Rail Transit vehicle

Figure 3.24. Mode Priority and Person Capacity. For longer trips, transit can move far more people and with greater efficiency than single occupant vehicles.

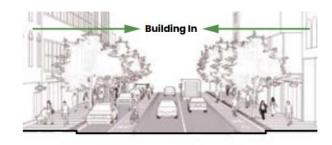
source: Metrolinx; Brampton Transit; DTAH


Figure 3.27. Block Pattern and Network Connectivity.

Six examples from different parts of Brampton. Note the higher amount of possible routes in some parts of the city than others. The greater the number of intersections in a given area, the more connected and complete the network.

source: DTAH

Place



FOCUS OF TRADITIONAL APPROACH

Auto-Mobility Automobile Safety

Highway 7

COMPLETE STREETS APPROACH

Multi-modal Mobility + Access Public Health/Safety Economic Development Environmental Quality Livability/Quality of Life Equity

Danforth Road

Greening

- Help Brampton mitigate and adapt to climate change
- Expand the urban forest by installing street trees
- Manage stormwater through street elements

Life Cycle and Maintenance

- Understand the total cost of the project and the cost of incomplete streets
- Support four-season use of streets
- Select robust materials to increase lifespan

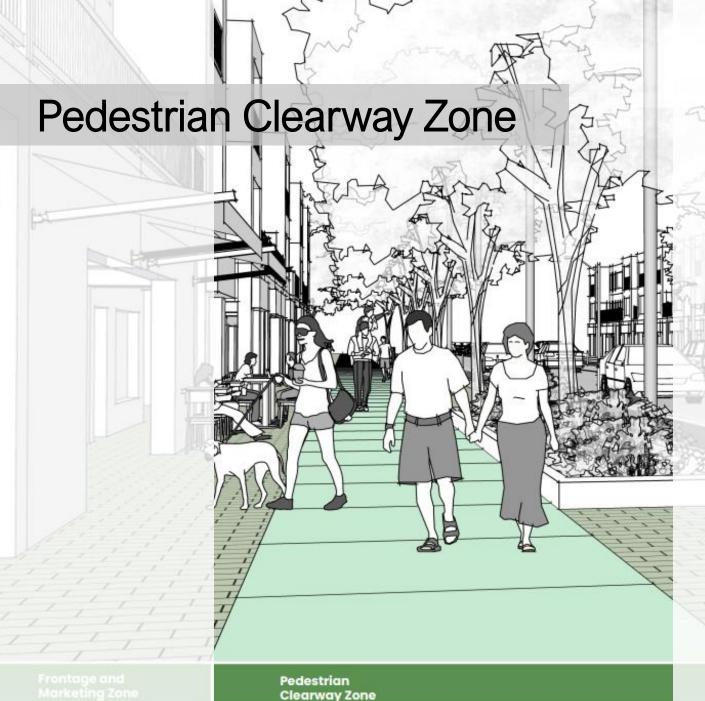
Figure 3.30. Designing streets that consider four season use means ensuring clear and accessible facilities for all users, and providing enough space for snow storage while maintaining suitable pedestrian clearway.

Components

Boulevard Design

Cycle Infrastructure Design

Roadway Design



Green Infrastructure Design

Intersection Design

Table 4.1 Pedestrian Clearway Width by Street Type

Street Type	Recommended Minimum Target Width
Urban Main Street	3.0m
Neighbourhood Connector	2.lm
Commercial Connector	2.lm
Mixed Use Residential	3.0m
Neighbourhood Residential	2.lm
Employment Collector	2.lm
Downtown Streets	3.0m
Local Residential	2.lm
Local Employment	2.lm
Shared	Entire Street
Lane	Entire Street

Furnishing & Planting Zone

- Typically between the edge zone and pedestrian clearway
- Preferred location for street furniture
- Can contribute significantly to placemaking

Figure 4.6. Provide street trees and landscaping in a dedicated Furniture and Planting Zone to maintain a continuous, unobstructed pedestrian clearway.

Edge/Curb Zone

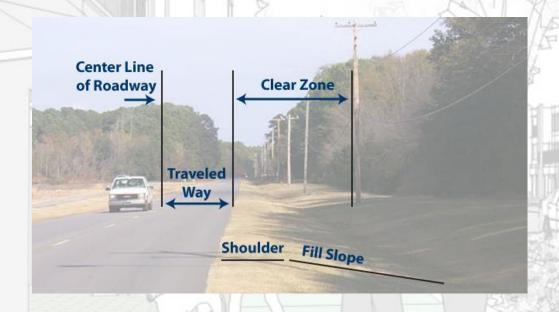


Figure 4.8. The Edge/Curb Zone may have some vertical elements, such as street lights, utility poles, parking meters and parking signs. It's also used for snow storage in the winter months.

- Should be distinct from the Furnishing/Planting Zone
- Promotes placemaking in urban areas
- Can be used for street maintenance (snow storage)
- May include sign posts, parking meters, car door swing paths
- Should not overlap with cycling facilities

Clear Zones/Lateral Offsets



Figure 4.27. Lateral Offsets for Brampton Streets, based on TAC 2017 Guidance. All measurements from face of curb.

Mid-block: minimum 0.5m; Intersections: minimum 0.9m; Enhanced offset for Urban Streets where space permits: 1.2m to 1.8m.

Clear Zones

- Traditionally clear zones are provided on highways and higher speed rural roads
- Clear zones are not applicable in urban contexts and not desirable for Brampton streets Lateral Offsets
- Vertical elements can help create a sense of traffic calming and physically separate vulnerable users

Marketing & Frontage Zone

Figure 4.7. Frontage and marketing display elements should be provided to maximize a clear and straight Pedestrian Clearway Zone

- Accommodates outdoor seating and marketing elements for local businesses
- Outdoor patios/marketing displays should not infringe on the pedestrian clearway

Cycle Infrastructure

Cycle Infrastructure

- Multi-Use Path
- Cycle Tracks
- Bike Lanes
- Bicycle Wayfinding

Sh	ared Space	Bicycle Boulevards Sharrows Super Sharrows Signed Routes	Volumes of < 3,000 AADT Operating speeds <40km/hr Local Roads
Desig	gnated Space	Bike Lanes Buffered Bike Lanes Paved Shoulders Buffered Paved Shoulders	Volumes of 3,000 to 15,000 AADT Operating speeds of 40 to 50km/hr Collector Roads/Minor Arterial Roads
Sepa	arated Space	Boulevard Multi-use Paths Separated Bike Lanes or Cycle Tracks	Volumes of >10,000 to >15,000 AADT Operating speeds of equal to or > 50km/h Minor Arterial Roads/Major Arterial Roads

Roadway

Design Elements

- Design Speed
- Lane widths
- Lateral Offsets for Vertical Elements
- Access for Emergency Vehicles
- Curbside Space
- Mid-block Pedestrian Crossings
- Traffic Calming
- Driveways

Design Speed

- Default speed in Brampton is 50 km/h
- Arterials are designed to facilitate the greatest vehicle operating speed
- The best practice in urban areas is to design streets so the operating speeds are the same as the posted speeds

Road Classification	Street Type	Design Speed	Posted Speed
Arterials	Urban Main Street	40-60	40-50
	Neighbourhood Connector	60-70	50-60
	Commercial Connector	60-70	50-60
Collectors	Mixed Use Residential	40-50	40-50
	Neighbourhood Residential	40-50	40-50
	Employment Collector	40	40
	Downtown Streets	40	40
Locals	Local Residential	30-40	30-40
	Local Employment	30-40	30-40
	Shared	20	20
	Lane	20	20

Table 4.10 Design Vehicle, Control Vehicle, and Curb Radii by Receiving Street

Receiving Street	BCSG Design Vehicle	BCSG Control Vehicle	Curb Radii* (m)
Minor Local	P: Passenger	LSU: Light Single Unit	4.0
Local	P: Passenger	LSU: Light Single Unit	4.0
Collector	LSU: Light Single Unit	B-12: Brampton Bus	6.0
Collector (Industrial)	MSU: Medium Single Unit	WB-20: Tractor	
Arterial	B-12: Brampton Bus	WB-20: Tractor	
Arterial (Industrial)	HSU: Heavy Single Unit	WB-20: Tractor	

Table 4.9 Brampton Roadway Lane Width Guidelines (metres)							
Lane Type	Minimum	Maximum	Target				
Streets with Design Speed 50km/h or less							
Curb	3.0	3.5	3.3				
Through	3.0	3.5	3.0				
Transit or Trucking Route							
Curb	3.5	3.7	3.5				
Through	3.3	3.5	3.3				
Streets with De	sign Speed greater	than 50km/h					
Curb	3.5	3.9	3.5				
Through	3.3	3.7	3.3				
All Streets							
Turning	3.0	3.5	3.0				
Dedicated Parking	2.4	3.0	2.5				

Potential Complete Street Cross Section

23.0m ROW, 11.2m Pavement

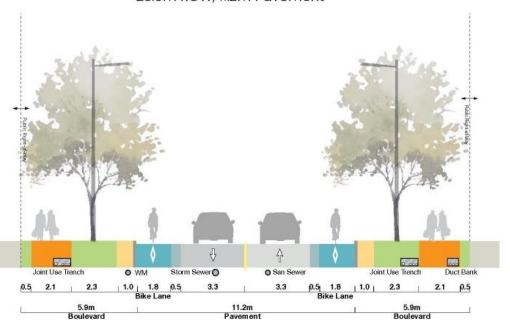


Table 4.6 Recommended Brampton Design and Posted Speeds, Related to Road Classification

Road Classification	Arterial	Collector	Local
Posted speed more than or equal to 50km/hr	Design speed = posted speed + 10km/hr	Design speed = posted speed	Design speed = posted speed
	Design speed = posted speed for the following elements: lane widths, tapers, and horizontal offsets		
Posted Speed less than 50km/hr	Design speed = posted speed + 10km/hr for the following elements: horizontal alignment, vertical alignment, and intersection sightlines.	Design speed=posted Design speed= speed for all elements speed for all ele	Design speed=posted speed for all elements

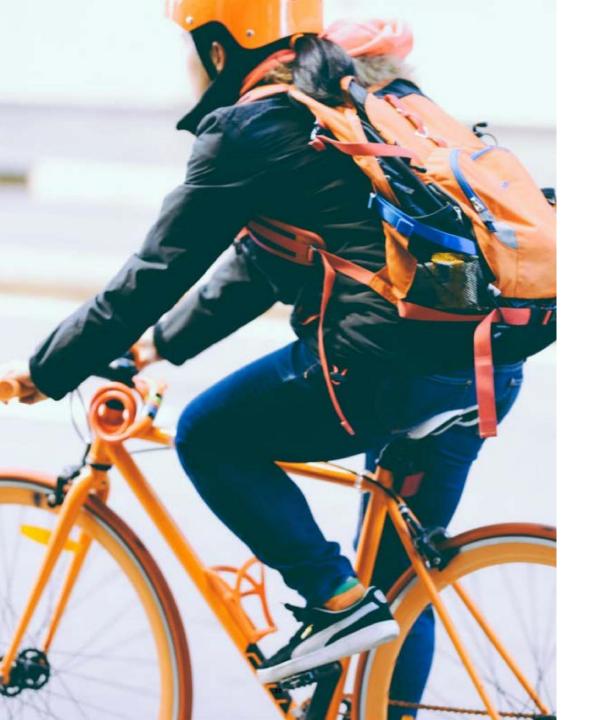
Intersection

Design Elements

- Context Sensitive Intersection Design
- Corner Design/Curb Radii
- Bicycle Infrastructure
- Transit Infrastructure
- Crosswalks
- Urban Smart Channels
- Intersection Control

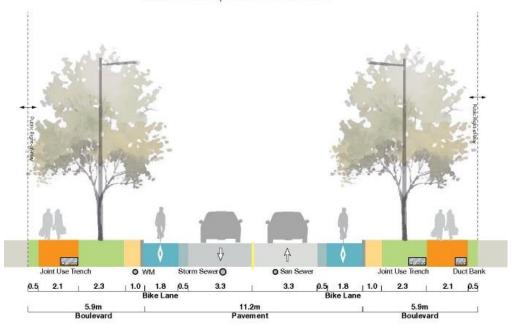
Green Infrastructure

Design Elements


- Street trees and landscaping
- Low impact developments

Recommendations

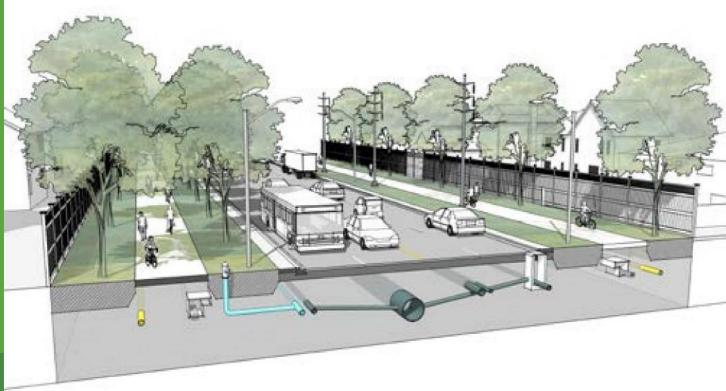
- Landscape
 Development Guidelines Update
- Stormwater Master Plan Update
- Low Impact Development (LID) Terms of Reference
- Stormwater Management Criteria


- Policy
- Standards & Guidelines
- Process
- Plans and Studies
- Projects
- Evaluation & Monitoring
- Communication & Engagement

Current Projects

- Ongoing environmental assessments and capital works projects
- Brampton Mobility Plan
- Speed Reduction Study
 - Policy and best practices review
- Standards Update
 - Update existing Brampton Standards
 - Add any new standards as required
- Complete Streets Website

Potential Complete Street Cross Section


23.0m ROW, 11.2m Pavement

CITY OF BRAMPTON COMPLETE STREETS **GUIDE**

Thank You

SEPTEMBER 2022

