GREENING THE TRANSIT FLEET

TOWARDS ELECTRIFICATION

Council Workshop March 5, 2021

Brampton Transit

TO MAJOR WILL TAP

AGENDA

GREENING THE TRANSIT FLEET TOWARDS ELECTRIFICATION

- 01. Current & projected fleet
- 02. Bus deliveries (2020)
- 03. Pan-Canadian eBus trial
- 04. Federal policy landscape
- 05. Canada Infrastructure Bank (CIB)
- 06. Technology for Brampton
- 07. Analysis & roll out
- 08. New transit facility electrification
- 09. Continuous Learning
- 10. Next Steps
 - Q&A

TRANSIT FLEET TODAY

HYBRID ELECTRIC:
Züm2010 = 133 Diesel-Electric
Hybrid BusesBATTERY ELECTRIC:
CUTRIC Trial – Phase I2021 = First 8 Battery-Electric
eBuses

Conventional 40' Züm 40' Züm 60'

TRANSIT FLEET

(HISTORICAL & PROJECTED GROWTH)

■ Conventional 40' ■ Züm 40' ■ Züm 60'

BUS DELIVERIES

To maintain our replacement schedule and address growth related service expansion, in 2020 Brampton Transit received:

- 23 growth buses
- 13 replacement buses

City recently signed onto the City of Toronto's cooperative fuel procurement for supply and delivery of bio-diesel.

PHASE I PAN-CANADIAN ELECTRIC BUS TRIAL

PHASE I PAN-CANADIAN ELECTRIC BUS TRIAL

- Four (4) Battery Electric
 Buses
- Two (2) High-powered overhead chargers

- Eight (8) Battery Electric Buses
- Four (4) High-powered overhead chargers

- Six (6) Battery Electric Buses
- One (1) high-powered overhead charger

FEDERAL POLICY LANDSCAPE

- Federal ministerial mandate letters (December 2019)
 - Starting in 2023, ensure that new federal investments in public transit are used to support zero-emission buses and rail systems and work with municipalities to address any exceptional circumstances.
 - Commit to working with provinces and territories to help school boards and municipalities purchase 5,000 zero-emission school and transit buses in the next five years.
- Staff have participated in Clean Energy Canada consultations of industry experts for federal policy considerations, and OPTA/CIB consultation sessions.
- Government of Canada / Canada Infrastructure Bank announcement of \$10B (October 1, 2020).

GROWTH PLAN

\$10 Billion

• Zero Emission Buses (ZEBs)

- Clean Power
- Energy Efficient Building Retrofits
- Large-scale Broadband Projects
- Agriculture-related Infrastructure

Supports Federal Mandate

- Growth electrification
- Purchase 5,000 zero-emission buses (2020-2024);
- Starting in 2023, new federal investments in public transit are used to support zero-emission buses.

Brampton-CIB MOU

- Non-binding Memorandum of Understanding
- Financing Agreement Council/CIB approval

CANADA INFRASTRUCTURE BANK BRAMPTON DISCUSSIONS

Financing/Loan

• Differential cost between diesel bus and electric bus

Risk Mitigation

- Loan Repayment
- Other Funding

ZERO EMISSIONS BUSES

Q | Which ZEB technology is right for Brampton?

- A | Based on what we know today, more than likely both BEB and FCEB (to be determined based on each route)
 - BEBs, most proven technology in North America currently
 - Two key studies to be completed to help determine our hybrid

ELECTRIC BUS TECHNOLOGY

	A	В	С	D
	Battery Electric Bus (BEB)			
	Diesel-Electric Hybrid	Opportunity (On-Street)	Plug-In (In-Depot)	Fuel Cell Electric Bus (FCEB)
		Charging	Charging	
				KTEISIOT CHARGE H2"
Zero Tailpipe Emission	×			
Infrastructure (plus electricity costs)	N/A	8:1	2:1	50:1
Interoperability Standards	N/A			

ANALYSIS & ROLL OUT

Transit Network Fleet Electrification Feasibility Analysis*

- Where (routes) and What (ZEB technology: BEB & FCEB)
- Very detailed assessment: route by route/block by block

Transit Sustainable Fleet Strategy & Rollout Plan*

- When (fleet year-by-year) and How (funding/procurement plan)
- Costing Analysis and Budget Forecasting

CUTRIC's ROUT∑.i™ MODELLING FUNCTIONALITY

- Calculate actual electricity costs in local jurisdictions
- Predict state-of-charge (SOC) of battery onboard bus
- Predictively assess ZEB or AV shuttle energy consumption
- Predict performance success rates for ZEBs considering revenue and non-revenue operations
- Conduct downtime assessments for BEB charging (on route and depot) and FCEB fuelling

- Assess suitability of route/block/vehicles for electrification
- Make recommendations for BEB, FCEB, e-LSAs selection
- Locate optimal locations for opportunity chargers and fuelling stations
- Calculate actual GHG reduction from ZEBs, compared with fossilfuel sources
- Assess the ease of electrification

THIRD TRANSIT FACILITY

PHASE

250 bus capacity \$204M

PHASE II

Additional 190 buses (total 440) \$TBD

ELECTRIFICATION OF FACILITY

\$150M*

*A rough order of magnitude costing estimate, subject to further feasibility review and detailed design.

THIRD TRANSIT FACILITY (CONTINUED)

Key considerations required to electrify facility in support of a fully electric bus fleet operating from the new facility:

- Power requirements
- Charging equipment
- On-site energy storage

CONTINUOUS LEARNING

CUTRIC Pan-Canadian Trial:

Opportunity charging, 8 eBuses, 4 eChargers

Opportunity charging, 4 eBuses, 2 eChargers

Opportunity charging, 6 eBuses, 1 eCharger

Other Canadian Agencies:

Depot-charging, 3 garages, 30 buses (10 each: New Flyer, Proterra, BYD)

Depot-charging using overhead chargers, 40 buses (2020; Proterra)

Depot-charging using overhead chargers, 60 buses (2020; 30 long-range, 30 quick-charge)

North American Peer-2-Peer (Quarterly):

OVERVIEW - NEXT STEPS

- Transit Network Fleet Electrification Feasibility Analysis
- Transit Sustainable Fleet Strategy & Rollout Plan
- Financial Options
- Report back to Council

THANK YOU!

